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a b s t r a c t

This paper reports the development of three peptide modified sensors in which glutathione (GSH) and its
fragments Cys–Gly and γ-Glu–Cys were immobilized respectively through aryl diazonium electroche-
mical grafting onto the surface of graphite–epoxy composite electrodes (GEC), and used for the
simultaneous determination of Cd(II), Pb(II) and Zn(II). The concentration interval ranged from 0.1 to
1.5 μmol L�1 for each metal, and the technique used was differential pulse adsorptive stripping
voltammetry. This study aimed to the comparison of the information provided by one single modified
electrode at both fixed and multiple pH values (pH 6.8, 7.5 and 8.2) for the simultaneous determination
of the three metals, with those supplied by the three-sensor array at multiple pH values. For the
processing of the voltammograms, the fast Fourier transform was selected as the preprocessing tool for
data compression coupled with an artificial neural network for the modeling of the obtained responses.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Monitoring levels of metal ions in aquatic ecosystems and soils
is of great importance in recent years from environmental and
biological point of view. In this sense, the use of chemically
modified electrodes, and particularly peptide modified electrodes
for the detection and quantification of metal ions in natural
samples is an area of major concern [1–3]. Peptides are effective
ligands for a great variety of metal ions. Their ability to bind these
metal ions is a consequence of the great number of potential donor
atoms they contain, both through the peptide backbone and amino
acid side chains [1,2]. The complexation of heavy metals by thiol
rich peptides such as glutathione (γ-Glu–Cys–Gly, denoted usually
as GSH), its fragments Cys–Gly and γ-Glu–Cys, or oligomers named
phytochelatins ((γ-Glu–Cys)n–Gly, denoted usually as PCn), and
related molecules has been extensively studied using electroana-
lytical techniques on mercury [4–13] and bismuth electrodes
[14,15] in combination with multivariate data analysis. These
works demonstrate that complex formation with the thiol groups
from the cysteines plays a crucial role in natural metal binding,
and it is important not only for heavy metal detoxification but also
for phytoremediation purposes [16–18].

An essential aspect in the design of these electrodes is the
molecule immobilization procedure [19]. In this sense, various
approaches were described in the literature including the use of
gold electrodes and the formation of self-assembled monolayers
(SAMs), in which the peptide is immobilized on the electrode surface
through the use of anchoring thiol groups. Nevertheless, the peptide
immobilization on aryl diazonium salt monolayers anchored on the
electrode surface has demonstrated to be an alternative strategy that
can overcome the major limitations of thiol SAMs such as the narrow
potential range for metal ion detection [20,21].

Peptide modified electrodes can be used for metal determination
as a single-electrode sensor or in combination with others forming a
multi-sensor array, in which each electrode in the array is modified
with different compounds in search for a multivariate response. A
multi-electrode array presents some disadvantages over a single
sensor in that a multichannel potentiostat to control the potential is
required and that the manufacturing time is longer. However, these
disadvantages are counterbalanced if the information provided by
the electrode array is significantly higher than that obtained from a
single electrode. These two approaches were investigated by Ebra-
himi et al. for the determination of Cu(II), Cd(II) and Pb(II) using a
four gold electrode sensor array modified with D,L-6,8-thioctic acid
(TA), TA–Gly–Gly–His, TA–GSH and TA–angiotensin I, or a single
electrode modified with the four compounds [22]; the determination
required the use of the multivariate chemometric tool partial least
squares regression (PLS).
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In this paper, we report the design of three peptide-modified
sensors in which GSH, Cys–Gly and γ-Glu–Cys were immobilized
on aryl diazonium salt monolayers electrochemically grafted to the
surface of graphite–epoxy composite electrodes (GEC) for the
simultaneous determination of ppb levels of Cd(II), Pb(II) and Zn
(II). The selection of these three peptides is motivated by the fact
that previous complexation studies demonstrated that Cys–Gly
and γ-Glu–Cys fragments, as well as the pH of the medium play a
particular and important role in each metal binding, since the
presence of different binding sites in GSH greatly increases the
number of possible structures of the complexes [23,24]. In this
respect, the aim of the present study is to compare the information
about the simultaneous determination of Cd(II), Pb(II) and Zn(II)
provided by one peptide-modified sensor at both single and multi-
pH values (pH 6.8, 7.5 and 8.2) with that supplied by the three-
sensor array at multi-pH values, being the first attempt using
quatrilinear data (sample � sensor � potential � pH). An
artificial neural network (ANN) model was proposed as a tool to
maximize the information obtained from the voltammetric data
sets using GSH–GEC, γ-Glu–Cys–GEC and Cys–Gly–GEC sensors
that a priori are difficult to interpret.

2. Experimental

2.1. Chemicals

Potassium ferricyanide K3[Fe(CN)6], potassium ferrocyanide
K4[Fe(CN)6], 2-(N-morpholino)-ethanesulfonic acid (MES), potas-
sium dihydrogen phosphate, sodium monophosphate, methanol,
perchloric acid, hydrochloric acid, N-hydroxysulfosuccinimide
(sulfo-NHS), N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide
hydrochloride (EDC) and sodium nitrite were purchased from
Sigma (St. Louis, MO, USA). 4-aminobenzoic acid (ABA) was
provided by Acros (Geel, Belgium). All other reagents used were
from Merck (Darmstadt, Germany) and Fluka (Buchs, Switzerland).
All reagents were of analytical grade. Glutathione (GSH), in the
reduced form, was provided by Merck with purity greater than
99%. γ-Glu–Cys and Cys–Gly were provided by Sigma with a purity
of 80% (as fluoroacetate salt) and 85%, respectively. Pb(II), Cd(II)
and Zn(II) stock solutions 10�2 mol L�1 were prepared from
Pb(NO3)2 �4H2O, Cd(NO3)2 �4H2O and Zn(NO3)2 �4H2O respectively
and standardized complexometrically [25].

Ultrapure water from MilliQ System (Millipore, Billerica, MA,
USA) was used in all experiments.

2.2. Apparatus

Differential pulse adsorptive stripping voltammetric (AdSV)
measurements were performed in an Autolab System PGSTAT 30
(EcoChemie, The Netherlands), in a multichannel configuration,
using GPES Multichannel 4.7 software package (EcoChemie). The
voltammetric cell was formed by the three working graphite
epoxy electrodes (GECs) modified with GSH, γ-Glu–Cys and
Cys–Gly respectively, a commercial platinum counter electrode
(Model 52-67, Crison Instruments, Barcelona, Spain) and a double
junction Ag/AgCl reference electrode (Thermo Orion 900200,
Beverly, MA, USA).

Impedance measurements were performed with an IM6e
Impedance Measurement Unit (BAS-Zahner, Kronach Germany)
using Thales (BAS-Zahner) software for data acquisition and
control of the experiments. A three electrode configuration was
used to perform the impedance measurements: a commercial
platinum counter electrode, a reference double junction Ag/AgCl
electrode and the GEC as the working electrode.

A pH meter GLP 22 (Crison Instruments, Barcelona, Spain) was
used for pH measurements.

All measurements were carried out at room temperature
(20 1C).

2.3. Procedures

2.3.1. Preparation of graphite epoxy electrodes
Graphite epoxy composite electrodes (GECs) were fabricated

using a PVC tube body (6 mm i. d.) and a small copper disk
soldered at the end of an electrical connector. The working surface
is an epoxy–graphite conductive composite, formed by a mixture
of 20% graphite powder (Merck, Darmstadt, Germany) and 80% of
epoxy resin, Epotek H77, and its corresponding hardener (both
from Epoxy Technology, Billerica, MA, USA), deposited on the
cavity of the plastic body [26]. The composite material was cured
at 80 1C for 3 days. Prior to their functionalization, the electrode
surface was moistened with MilliQ water and then polished on
abrasive sandpaper (400, 600, 800, 1000 and 1200 grit) and finally
on alumina polishing strips (301044-001, Orion) in order to obtain
a reproducible electrochemical surface.

2.3.2. Preparation of modified GECs
The principle of the modification of the GEC is illustrated in

Fig. 1, with specific steps described below [27].

2.3.2.1. Diazonium salt electrografting. The in situ generation of the
aryl diazonium was performed by adding 5�10�3 equivalents of
sodium nitrite to an acidic solution (1 M aqueous HCl) of ABA.
These solutions were mixed for about 30 min in an ice bath, prior
to the electrografting process, conducted by scanning the potential
at 0.2 V s�1 from 0 V to �1 V for 100 cycles. The functionalized
electrodes were thoroughly rinsed with Milli-Q water and
methanol to remove the physisorbed compounds.

2.3.2.2. Covalent immobilization of peptides via carbodiimide
coupling. The carboxyl groups of the electrografted diazonium
salt were activated by incubating the functionalized electrodes in
a 26 mM EDC and 35 mM sulfo-NHS solution in 100 mM MES

Fig. 1. Scheme of the preparation of GSH–GEC, γ-Glu–Cys–GEC and Cys–Gly–GEC
by electrochemical grafting.
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buffer (pH 4.5) for 1 h. The activated groups reacted overnight
with the amine terminal groups of each peptide (GSH, γ-Glu–Cys,
Cys–Gly at 2.9 mg/100 mL in 0.1 M MES buffer) at 4 1C to form
amide bonds.

2.3.3. Electrochemical characterization
Electrodes were characterized at each functionalization step

using cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS). Electrochemical measurements were per-
formed in an unstirred solution of 2 mM ferrocyanide and 2 mM
ferricyanide in 100 mM phosphate buffer, pH 7.4. Cyclic voltam-
mograms were obtained by scanning the potential at 0.1 V s�1

from �0.2 V to 0.6 V. EIS measurements were performed under
open circuit potential conditions. Frequencies from 500 kHz to
0.1 Hz in logarithmic spacing were applied. The AC amplitude was
5 mV.

2.3.4. Voltammetric measurements
Voltammograms were obtained under the following condi-

tions: a deposition potential (Ed) of �1.4 V applied with
stirring during a deposition time (td) of 300 s followed for a rest
period (tr) of 10 s; a stripping potential swept from �1.4 V to
�0.5 V vs. Ag/AgCl, using a step potential of 4 mV and pulse
amplitude of 50 mV.

All experiments were carried out without any oxygen removal.
Prior to sample measurements, the electrodes were scanned in

buffer solution in order to get stable voltammetric responses.
In order to eliminate the remaining bound metals from the

electrode an electrochemical cleaning stage was considered
between measurements. This stage is performed applying a con-
ditioning potential (Econd) of 0.5 V for 15 s after each measurement,
in a cell containing 0.1 mol L�1 HClO4 [28].

2.3.5. Preparation of metals mixtures samples
From the prepared metal stock solutions, a total set of 36

samples were manually prepared by appropriate dilution for each
of the considered pH values (6.8, 7.5 and 8.2). The set of samples
was divided into two data subsets: a training subset formed by 27
samples (75%), which were distributed in a cubic design [29] and
used to establish the response model; plus 9 additional samples
(25%) for the testing subset, randomly distributed along the
experimental domain, and used to evaluate the model predictive
response. Table 1 shows the specific concentrations of the three
considered metals in the 36 samples prepared, at 3 pHs 6.8,
7.5 and 8.2. Maleic acid–KOH buffer solution 0.1 mol L�1 (pH 6.8)
and Tris (hydroxymethyl) aminomethane–HCl buffer solution
0.1 mol L�1 (pH 7.5 and pH 8.2) were used for pH control.

2.4. Data processing

A known problem when voltammetric sensors are used is the
large data record generated which hinders their treatment;
especially if ANNs are to be used, in which case departure
information needs to be preprocessed [30]. Besides avoiding
saturating the associated model, this step may also help to gain
advantages in training time, to avoid redundancy in input data and
to obtain a model with better generalization ability.

Hence, for the construction of the chemometric model, voltam-
metric data was first compressed employing fast Fourier transform
(FFT) [30]. By compromising between the reconstruction degree
and the number of obtained coefficients, raw voltammetric data
was compressed up to only 8 coefficients without any loss of
significant information, which allowed for a compression of the
original information up to 96.1%. Afterwards, the obtained

coefficients were used as inputs in the ANN model which, after
its optimization, allowed the quantification of the different metals.

The chemometric processing of the data described above was
performed by specific routines written by the authors using
MATLAB 7.1 (MathWorks, Natick, MA) and its Neural Network
toolbox. Additionally, Sigmaplot (Systat Software Inc, CA) was also
used for graphic representations of data and results.

3. Results and discussion

3.1. Electrochemical characterization: CV and EIS analysis

CV and EIS data were used to characterize each step of functiona-
lization. After electrografting, the electrochemical response for the
redox probe ferrocyanide/ferricyanide and the potential peak separa-
tion between the anodic and cathodic peaks was investigated using
CV. Electrografting resulted in decreasing current as expected (Fig. 2a).
Covalent binding of peptides also resulted in lower current peaks, as
shown in Fig. 2a for GSH. GSH, γ-Glu–Cys and Cys–Gly have an
isoelectric point lower than the working pH (7.4), and thus, they
remained negatively charged under working conditions, leading to the
decrease of the current measured for the oxidation/reduction of the
redox probe because of electrostatic repulsion. EIS was also used to
confirm the electrografting and peptide binding. The recorded

Table 1
Concentration information for the complete data set, all values are in ppb. One
stripping voltammogram was measured on GSH–GEC, Cys–Gly–GEC and γ-Glu–
Cys–GEC sensors for each combination of the three metal concentrations at pH 6.8,
7.5 and 8.2.

Pb(II) Cd(II) Zn(II)

Training subset sample concentrations (ppb)
20.7 23.3 34.7
31.9 41.5 66.4
43.0 59.7 98.1
54.2 77.8 31.2
65.3 96.0 62.9
76.5 114.1 94.6
87.7 132.3 27.7
98.8 150.5 59.4
110.0 168.6 91.1
121.1 17.3 24.2
132.3 35.5 55.9
143.4 53.6 87.5
154.6 71.8 20.6
165.8 89.9 52.3
176.9 108.1 84.0
188.1 126.2 17.1
199.2 144.4 48.8
210.4 162.6 80.5
221.5 11.2 13.6
232.7 29.4 45.3
243.9 47.6 77.0
255.0 65.7 10.1
266.2 83.9 41.8
277.3 102.0 73.5
288.5 120.2 6.5
299.6 138.4 38.2
310.8 156.5 69.9

External test subset of samples (ppb)
179.9 54.5 40.0
148.1 125.2 75.7
202.0 72.7 28.5
80.7 43.4 42.3
189.0 100.2 65.6
125.3 161.7 85.6
88.3 66.2 53.8
63.9 85.5 92.8
113.7 133.4 82.0
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impedance spectra were fitted to a Randles circuit, corresponding to a
basic equivalent circuit that includes the solution resistance (Rs), the
charge transfer resistance (Rct), the Warburg impedance (W) and a
constant phase element (CPE, originated by non-idealities in the
electrode surface) (Fig. 2b). The Rct values obtained from the diameter
of the semicircle of the Nyquist plots in Fig. 2b showed a significant
increase after electrografting, from 1090 Ω for a bare electrode to
20,093Ω for a diazonium salt-modified electrode. Binding of the
peptide led to a further increase in Rct that confirmed the immobiliza-
tion of the peptide on the electrode surface.

3.2. Voltammetric responses

The selected Ed, td and tr were firstly optimized to ensure the
detection of each metal at each modified electrode in the selected
concentration range (data not shown), being for all cases a Ed of
�1.4 V applied with stirring during a td of 300 s and followed for a tr
of 10 s.

Applying the described procedure, the set of 36 samples detailed in
Table 1 was measured at pH values of 6.8, 7.5 and 8.2 using the three
modified electrodes: GSH–GEC, γ-Glu–Cys–GEC and Cys–Gly–GEC,
obtaining a whole stripping voltammogram for each of the sensors.
Fig. 3 displays, as an example, the obtained voltammograms for the
complete data set using the GSH–GEC sensor for the simultaneous
determination of Pb(II), Cd(II) and Zn(II) at the different pH values. At
pH 6.8 (Fig. 3a) Cd(II) and Pb(II) ions exhibit at ca. �0.89 V and –

0.65 V respectively an unique, well defined and undistorted peak in
the wide range of metal concentration, but in agreement with
previous works [24] no signal due to Zn(II)-ion was detected. More-
over in the concentration range from 0.1 to 1.5 mmol L�1 for Cd(II) and
Pb(II) a linear response with the peak area of eachmetal was obtained.
However, the increase of the metal concentration produces a gradual
peak potential shift in both metal signals to more positive potentials.
At pH 7.5 (Fig. 3b) the voltammograms displayed no differences in Pb
(II) peak shape and peak potential shift with the signals measured at
pH 6.8, whereas Cd(II) presents a more distorted signal with an unique
or two overlapping peaks depending on the metal concentration
range. In agreement with the aforementioned study [24], a wide
signal related to Zn(II)-ions appears at ca. �1.16 V when the pH value
increases. The total area of the voltammograms of each metal is again
linear with the metal concentration from 0.1 to 1.5 mmol L�1 for Pb(II),
Cd(II) and Zn(II).

Finally, voltammograms obtained at pH 8.2 (Fig. 3c) show that
pH value does not affect the peak shape and position of Pb(II)-ion,
while Cd(II) and Zn(II) signals are increasingly distorted and

overlapping. Even so, the same linear dependence between total
peak areas and concentrations was observed inside the same
ranges for Pb(II), Cd(II) and Zn(II).

Fig. 2. (A) CVs and (B) Nyquist impedance plots recorded at electrodes modified with electrografted diazonium salts and covalently bound GSH. Measurements were
performed in a 2 mM ferrocyanide/ferricyanide solution in phosphate buffer. Inset in (B): equivalent circuit used to fit experimental data.

Fig. 3. Differential pulse adsorptive stripping voltammograms of Pb(II), Cd(II) and
Zn(II) recorded on a GSH–GEC sensor at the three selected pH's ((A) 6.8, (B) 7.5, and
(C) 8.2) using a Ed of �1.40 V during 300 s and tr of 10 s.
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Similar voltammetric responses for Pb(II), Cd(II) and Zn(II) were
also observed using γ-Glu–Cys–GEC and Cys–Gly–GEC sensors at
the three measured pH values.

Table 2 summarizes the mean of the peak potential and the
sensitivities computed from the slope of the calibration curve of each
metal at the three measured pH values using the three modified
electrodes: GSH–GEC, γ-Glu–Cys–GEC and Cys–Gly–GEC. As it can be
seen, at pH 6.8 Pb(II) regardless of the used sensor has better
sensitivity than Cd(II). When the pH value is 7.5 the sensitivity
for Zn(II) is higher than for Cd(II) and Pb(II), whose sensitivities
remain more or less constant and significantly decrease, respectively,
compared to pH 6.8. This decrease in the sensitivity in the case of Pb
(II)-ion is attributed to the presence of hydrolysis at this pH value.
Finally at pH 8.2, the sensitivity for Cd(II) and Pb(II) is comparable to
that of pH 7.5, while for Zn(II)-ions the sensitivity slightly decreases
probably due to the presence of some hydrolysis. At the view of
the results, we can conclude that, regardless of pH value and metal
ion, GSH–GEC is the sensor with better sensitivity followed by Cys–
Gly–GEC sensor, and being γ-Glu–Cys–GEC the less sensitive sensor.
The second observation is that pH can add some discrimination
power to resolve the mixture.

3.3. Quantification of the metal mixtures

After compression of the data, and in order to find the
appropriate ANN model, significant effort is needed to optimize
the configuration details that determine its operation. Normally,
this is a trial-and-error process, where several parameters (train-
ing algorithms, number of hidden layers, transfer functions, etc.)
are fine-tuned in order to find the best configuration that
optimizes the performance of the model.

Thus, model was built employing the samples from the training
subset, and its accuracy was then evaluated towards samples of
the external test subset by using the built model to predict the
concentrations of the metals of those samples. Since the external
test subset data is not employed at all for the modeling, its
goodness of fit is a measure of the accomplished modeling
performance. To easily check the prediction ability of the obtained
ANN model, comparison graphs of predicted vs. expected concen-
trations for the considered compounds were built, both for
training subset and testing subsets. Additionally, root mean square
error (RMSE) was also calculated [30]. Thus, the best model will be
the one that has the lowest RMSE and regression parameters from
the comparison graphs close to the ideal values (i.e. slope and
correlation coefficient equal 1, and intercept equal 0).

Table 2
Peak potentials and sensitivities obtained from the complete voltammetric data set measured on GSH–GEC, Cys–Gly–GEC and γ-Glu–Cys–GEC sensors at pH 6.8, 7.5 and 8.2.

Pb (II) Cd (II) Zn (II)

GSH Cys-Gly γ-Glu-Cys GSH Cys-Gly γ-Glu-Cys GSH Cys-Gly γ-Glu-Cys

pH 6.8
Potential (V)a �0.6570.01 �0.6570.01 �0.6670.01 �0.8970.01 �0.8970.01 �0.9070.01 n.d. n.d. n.d.
Sensitivity (nA ppb�1)b 12.070.6 9.970.5 7.870.8 6.870.4 6.470.5 6.370.7

pH 7.5
Potential (V)a �0.6470.02 �0.6370.01 �0.6470.02 �0.8870.01 �0.8870.01 �0.8870.01 �1.1670.01 �1.1570.01 �1.1670.01
Sensitivity (nA ppb�1)b 5.870.7 671 671 6.870.4 6.470.8 5.970.7 1171 1272 872

pH 8.2
Potential (V)a �0.6670.02 �0.6570.01 �0.6570.01 �0.8970.02 �0.8970.03 �0.8970.03 -1.1970.01 -1.1870.02 -1.1970.01
Sensitivity (nA ppb�1)b 671 6.070.6 5.970.7 671 5.470.5 5.070.6 871 971 671

n.d.: not detected
a Value is the mean of 36 standard concentrations of Pb(II), Cd(II) and Zn(II), and the standard deviations obtained.
b Value obtained from the slope of the calibration curve and its corresponding standard deviation.

Fig. 4. Modeling ability of the optimized ANN for GSH-GEC sensor at pH 8.2. Sets
adjustments of obtained vs. expected concentrations for (A) Pb(II) and (B) Cd(II),
both for training (●, solid line) and testing subsets (○, dotted line). Dashed line
corresponds to theoretical diagonal line.
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3.3.1. One sensor at single pH value
Initially, resolution of the three metals mixtures was attempted

employing separately the data from each of the pHs (6.8, 7.5
and 8.2) using the GSH–GEC sensor. The selection of GSH–GEC
sensor over the other sensors is motivated by both GSH is constit-
uted by Cys–Gly plus γ-Glu–Cys fragments and presents better
performance in voltammetric measurements. In this manner,
voltammetric responses obtained on GSH–GEC sensor were com-
pressed employing FFT and three different neural network models
were built; i.e. one for each of the pHs. Being the purpose of such
approach to assess if data collected from a single pH could be
enough to achieve the correct modeling of the three species.

As described, the different ANN models were optimized and
comparison graphs were built for each of the cases. However,
accuracy of the generated models was too poor (data not shown),
especially for zinc, for which either slope or correlation coeffi-
cients were around 0.8 in the best cases (expected value of 1.0).
These results agreed with the ones that could be expected having a
look at the raw voltammetric responses (Fig. 3), as the peak
corresponding to zinc is the smallest and distorted one.

Then, based on these results, it was thought that maybe the system
would be able to overcome the presence of zinc in the samples and
correct its interference for the modeling of the other two metal
species; an approach already evaluated in previous cases [31].Thus,
new ANN models were built, but in this case, having only two output
neurons (one for lead and the other for cadmium concentrations).

In this manner, global performance of the model improved, and
satisfactory trend was obtained for the two metals as can be
seen in Fig. 4 and Table 3, showing the results obtained with
GSH-modified sensor at pH 8.2. Thus, demonstrating the capabil-
ities of the approach and the richness of the data. In this case two
metals, Pb(II) and Cd(II) could be predicted, and any distortion
produced by the presence of Zn(II) could be corrected. Never-
theless, our goal was to achieve the simultaneous quantification of
the three species; hence, the next step was to combine the data
obtained from the different pHs and use it to build a unique model.

At this point, prior to proceed to build a model with data
coming from different pH values, it would be important to
ascertain the reproducibility of the approach. That is, to ensure
that measurement of new samples at the same pH would lead to

the same results already obtained. To this aim, a new set of
samples was prepared and measured again. Then, obtained
responses were processed by retraining of the previously built
model. That is employing the same procedure for data compres-
sion and the optimized ANN topology.

In this way, predicted values in external test subset (n¼9) from
the two independent sets of measurements were compared by
means of a Student's paired samples t-test. Obtained experimental
t values were 0.441 and 1.95 for Pb(II) and Cd(II), respectively,
while the critical tabulated t value with 95% confidence level and
8 degrees of freedom was 2.306. This comparison demonstrates
that there are no significant differences between replicated
experiments and that the method is reproducible at the 95% level.

3.3.2. One sensor at multi-pH values
A second possibility that arises from the studies done is the use of

pH as discriminating variable. Therefore, ANN response models based
on the responses from one sensor (GSH-modified) at the three pH
tested were evaluated for the resolution of the metal mixture.

Upon completion of an extensive study varying its configura-
tions, the final architecture of the ANN model had 24 neurons (8
Fourier coefficients � 3 pHs) in the input layer, 5 neurons and
purelin transfer function in the hidden layer and three neurons and
tansig transfer function in the output layer, providing the concen-
trations of the three species considered. This configuration was
employed with the GSH-GEC sensor, as the one with best overall
performance.

As can be observed in Fig. 5, similar behavior as in the previous
section is obtained for both lead and cadmium, but significant
improvements are achieved for zinc. With this approach, a satisfac-
tory trend is obtained for the three compounds, with regression lines
closer to the theoretical ones. Additionally, regression parameters
were calculated (Table 3), and as shown by the graphs, a good linear
trend is attained for all the cases, but, as expected, with improved
behavior for the training subsets due to the fact that this subset has
been used to build the model. Despite this, the results obtained for
both subsets are close to the ideal values, with intercepts close to 0,
and slopes and correlation coefficients close to 1.

Table 3
Results of the fitted regression lines for the comparison between obtained vs. expected values, both for the training and testing subsets of samples and the different metal
species (intervals calculated at the 95% confidence level).

Metal Correlation Slope Intercept (ppb) RMSE (ppb)c NRMSE (ppb)c Total RMSE (ppb) Total NRMSE

One sensor at single pH valuesa

tr Pb(II) 0.992 0.9870.05 2710 11.1 0.0390 8.66 0.0369
Cd(II) 0.994 0.9870.05 175 5.28 0.0348

ts Pb(II) 0.940 1.0170.33 15746 23.7 0.0973 20.7 0.129
Cd(II) 0.950 0.9870.29 14729 17.2 0.154

One sensor at multi-pH valuesb

tr Pb(II) 0.999 0.9570.02 874 6.03 0.0219 5.44 0.0435
Cd(II) 0.994 0.9470.04 574 5.73 0.0436
Zn(II) 0.990 0.9070.05 573 4.44 0.0575

ts Pb(II) 0.977 0.9570.19 21726 18.1 0.150 17.7 0.174
Cd(II) 0.940 0.9470.31 -11731 21.3 0.211
Zn(II) 0.919 1.0670.41 4727 12.4 0.154

Three-sensor array at multi-pH values
tr Pb(II) 0.999 0.9570.02 873 5.72 0.0218 4.72 0.0336

Cd(II) 0.998 0.9270.02 772 4.85 0.0362
Zn(II) 0.996 0.9270.03 472 3.25 0.0400

ts Pb(II) 0.978 1.0470.20 16728 23.9 0.179 19.2 0.174
Cd(II) 0.937 0.9570.32 -11732 20.5 0.198
Zn(II) 0.923 1.0070.37 6725 10.9 0.143

a GSH-GEC sensor at pH 8.2.
b GSH-GEC sensor.
c tr: training subset; ts: testing subset; RMSE: root mean square error; NRMSE: normalized root mean square error.
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Fig. 5. Modeling ability of the optimized ANN for GSH-GEC sensor using data from
the three pHs tested (6.8, 7.5 and 8.2). Sets adjustments of obtained vs. expected
concentrations for (A) Pb(II), (B) Cd(II) and (C) Zn(II), both for training (●, solid line)
and testing subsets (○, dotted line). Dashed line corresponds to theoretical
diagonal line.

Fig. 6. Modeling ability of the optimized ANN for the three-sensor array at
multi-pH values. Sets adjustments of obtained vs. expected concentrations
for (A) Pb(II), (B) Cd(II) and (C) Zn(II), both for training (●, solid line) and
testing subsets (○, dotted line). Dashed line corresponds to theoretical
diagonal line.
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3.3.3. Three-sensor array at multi-pH values
Lastly, to further enrich the departure data and try to improve

the performance of the generated model, the last approach was
based on the use of an array of three electrodes instead of a single
sensor. To this aim, the set of samples was measured with the
three electrodes (GSH–GEC, γ-Glu–Cys–GEC and Cys–Gly–GEC)
and at three different pHs (6.8, 7.5 and 8.2). As the complexity
of the data is too high (samples � sensors � pH � potentials),
the same approach previously used was employed; that is, unfold-
ing and compression of the recorded voltammograms. In this
manner, and after its optimization, the ANN model had 72 neurons
(8 Fourier coefficients � 3 pHs � 3 sensors) in the input layer,
4 neurons and purelin transfer function in the hidden layer and
three neurons and tansig transfer function in the output layer,
providing the concentrations of the three species considered.

Again, comparison graphs of predicted vs. expected concentrations
for the considered compounds were built (Fig. 6) and regression
parameters were calculated (Table 3). As it can be seen, results slightly
improved in this manner (especially for zinc), but not as much as it
could be expected from the increase of the complexity of the
voltammetric data. This fact could be mainly due to two reasons;
the first one because of GSH is constituted by Cys–Gly and γ-Glu–Cys
fragments, and the second one because of the data treatment method.
That is, the unfolding of the data may cause discontinuities that, if
taken into account, may help on improving the results. However, up
to now and to the author's knowledge, there is no method described
in the literature for quatrilinear data. Thus, representing this experi-
mental setup a promising field to be explored.

4. Conclusions

At the sight of the results, the simultaneous determination of
Pb(II), Cd(II) and Zn(II) at ppb levels was demonstrated using a three-
sensor array modified with GSH, γ-Glu–Cys and Cys–Gly. The pep-
tides were successfully immobilized on aryl diazonium salt mono-
layers anchored on a graphite epoxy composite electrode surface.
A good voltammetric response was obtained for all the metals at
three experimental pH values using GSH–GEC, γ-Glu–Cys–GEC and
Cys–Gly–GEC sensors, although GSH–GEC is the one with better
sensitivity followed by Cys–Gly–GEC, and being γ-Glu–Cys–GEC the
less sensitive sensor. The concentration intervals of metals, as well as
the achieved detection limits are similar to those obtained in
previous work [22]. However in this paper the applied deposition
time was significantly reduced, being of 300 s instead of the 600 s
used in earlier studies. Therefore, lower concentrations ranges and
better detection limits could still be achieved by increasing the
deposition time. Moreover, attaining better performance of the built
models as demonstrated through the reduction of RMSE values.

Comparative analysis of voltammetric data, preprocessed by
fast Fourier transform and coupled with an artificial neural net-
work provided by one sensor at both single and multi-pH values
with those supplied by the three-sensor array at multi-pH values,
allows to conclude that the information provided by GSH–GEC
sensor at single pH values was not enough to achieve the correct
modeling of the three species. Satisfactory results were only
obtained for both Pb(II) and Cd(II) ions, while the presence of zinc
in the samples was corrected as an interference by the model. In
contrast, the information collected by GSH–GEC sensor at multi-
pH values permitted to obtain a satisfactory trend for the three
metal ions.

Finally, the analysis of multi-way data from the three-electrode
array, which represents a first attempt using quatrilinear data,
resulted in a slightly improvement of the results (especially for

zinc), but not as much as it could be expected from the increase of
the data complexity; this is probably due to redundancy, in the fact
that GSH is constituted by Cys–Gly and γ-Glu–Cys fragments, or to
the still to improve data treatment. Nevertheless, the followed
procedure, as approach to enrich the departure data and to
improve the performance of the generated model is a promising
field to be explored.

In conclusion, the present work considers a problem that can be
encountered in the analysis of natural samples containing a mixture
of different heavy metals. Even so, further research focused on the
application of the analysis of multi-way data from an array of
peptide-modified electrodes for the determination of heavy metals
ions in environmental and biological samples is required.
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